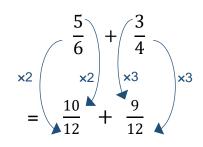


CARGILFIELD

Maths Revision

Book 2


Name[.]

Number

Fractions

Calculating with Fractions

Addition

$$= \frac{19}{12}$$

$$= 1\frac{7}{12}$$

Subtraction

$$3\frac{1}{3} - 1\frac{2}{3}$$

Subtract wholes first

$$= 2\frac{1}{3} - \frac{2}{3}$$
Change one whole into thirds

$$=1+\frac{3}{3}+\frac{1}{3}-\frac{2}{3}$$

$$= 1\frac{2}{3}$$

Multiplication

$$3\frac{3}{4} \times 1\frac{3}{5} \times \frac{3}{8}$$

$$= \frac{15}{4} \times \frac{8}{5} \times \frac{3}{8}$$

$$= \frac{3\cancel{15} \times \cancel{18} \times \cancel{3}}{4 \times \cancel{5} \times \cancel{8}}$$

$$= \frac{9}{4}$$

$$= 2\frac{1}{4}$$

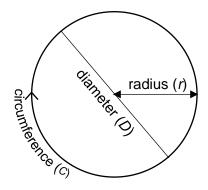
Division

$$\frac{5}{12} \div \frac{15}{16}$$
 Invert right hand side

$$= \frac{5}{12} \times \frac{16}{15}$$

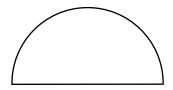
$$= \frac{\frac{1}{5} \times \frac{4}{16}}{\frac{12}{12} \times \frac{15}{15}}$$

$$=\frac{4}{6}$$

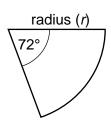

Fraction Problems

Merry the monkey eats 11/3 bananas each day. How many bananas will Merry eat in 12 days? $1\frac{1}{3} = \frac{4}{3}$ $3 \times \frac{4}{3}$ bananas in 1 day $\times 3$

How many days will 24 bananas last if Smiley eats $\frac{2}{5}$ of a banana each day?


 $8 \times \frac{2}{5}$ bananas in 1 day $\times 5$

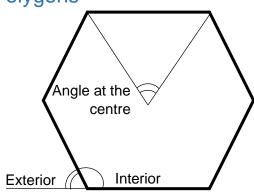
Circles


- Area of Circle = πr^2
- Circumference = $2\pi r$

Semi-circles

- Area = $\frac{1}{2} \pi r^2$
- Perimeter = $\frac{2\pi r}{2}$ + D

Segments


• Find out how many segments make up a full circle:

e.g.
$$360^{\circ} \div 72^{\circ} = 5$$

- Area of Segment (above) = $\frac{1}{5} \times \pi r^2$
- Perimeter = $\frac{1}{5} \times 2\pi r + 2r$

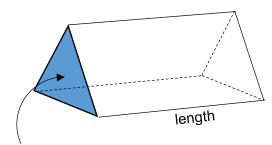
Shapes

Polygons

Polygon Formulae:

- Angle at the centre = Exterior angle
- Number of sides(n) = 360 ÷ Exterior angle
- Exterior angle = 360 ÷ Number of sides
- Angle at the centre = Exterior angle
- Interior angle + Exterior angle = 180°
- Sum of Interior angles = 180(n-2)

Volume

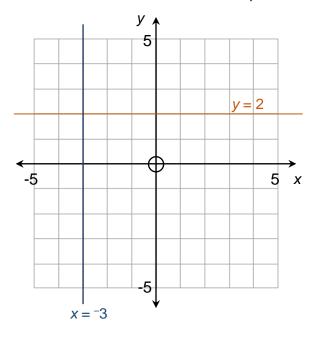


- Volume of a cuboid
 - = length x breadth x height
- Surface area of cuboid = 2ab + 2bc + 2ac
- Volume of a prism

= cross-sectional area × length

Surface area of a prism

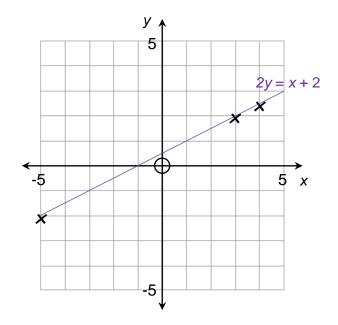
= sum of the areas of all faces

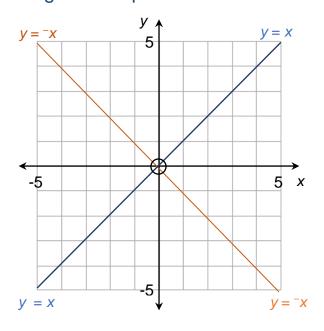


cross-sectional area

Graphs

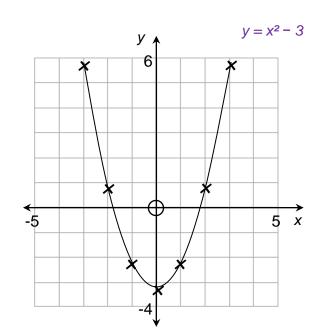
Straight Line Graphs


Horizontal and Vertical Graphs

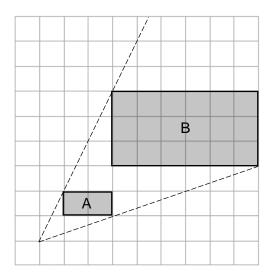

y = mx + c type graphs

2y = x + 1 (which is same as $y = \frac{1}{2}x + \frac{1}{2}$)

X	-5	3	4
У	-2	2	2.5



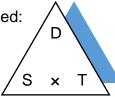
Diagonal Graphs


Quadratic Graphs (Level 3)

х	-3	-2	-1	0	1	2	3
У	6	1	-2	-3	-2	1	6

Enlargement: Area and Perimeter

- If the scale factor is 3, the perimeter of the enlarged shape will be 3 times longer.
- the area of the enlarged shape will be 9 times larger (3²)


Q. Triangle F is an enlargement of triangle E using a scale factor of 3. If triangle F has an area of 72 cm², find the area of triangle E.

Area of E =
$$72 \div 3^2$$

= $72 \div 9$
= 8 cm^2

Speed, Distance and Time

The formula to calculate speed:

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

Work out the speed of a car travelling 180 miles in 3 hours and 20 minutes:

Time in hours = 3.33333333... or
$$3\frac{20}{60}$$

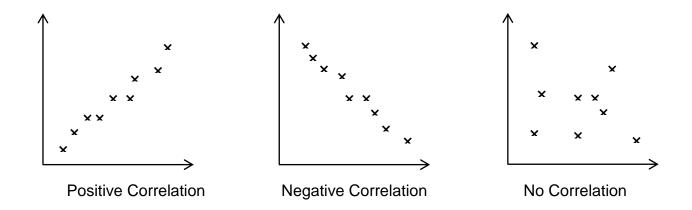
Work out the time taken to travel 96 km at a speed of 40 km/h:

= 54 mph

Time = distance ÷ speed
=
$$96 \div 40$$

= $2.4 \text{ hours} = 2\frac{4}{10} = 2\frac{24}{60}$

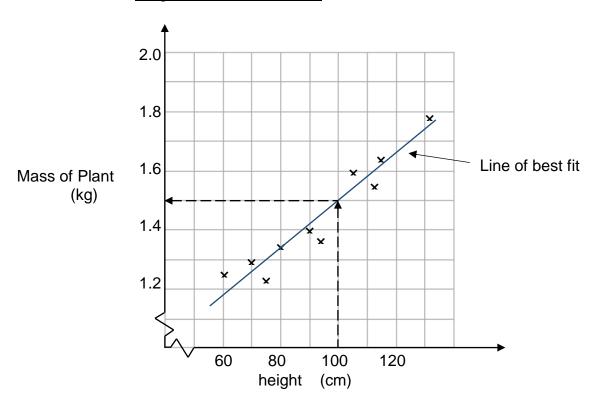
= 2 hours 24 minutes


Change 72 km/h into metres per second:

speed =
$$\frac{\text{distance}}{\text{time}}$$

= $\frac{72000 \text{ m}}{3600 \text{ s}}$
= $\frac{20 \text{ m/s}}{3600 \text{ s}}$

= 14.4 km/h

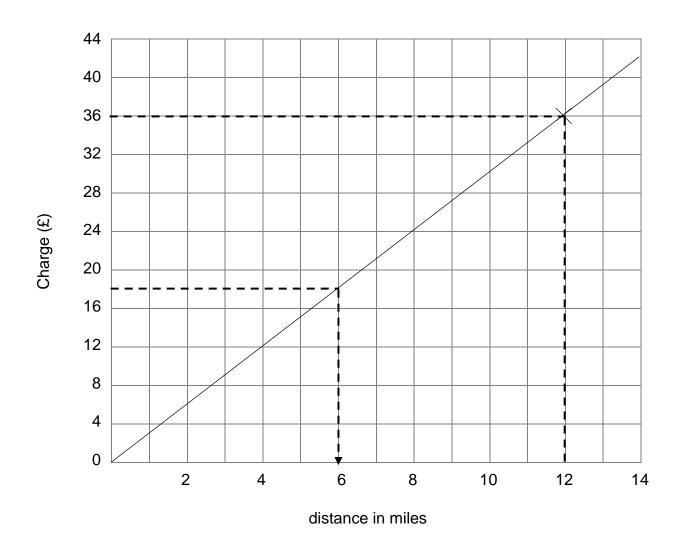

*Remember: 1 hour = $60 \times 60 = 3600$ seconds

Scatter Graphs and Correlation

Example: Molly grows some plants and measures their height and mass. She then plots her results on a scatter graph as shown below.

Height and Mass of Plants

Question: Use the line of best fit to predict the mass of a 100 cm plant.


Answer: Show your working on the graph using dotted lines (see above). If the plant has a height of 100 cm, it will weigh approximately 1.5 kg

Conversion Graphs

Example:

Easycab taxi company charge passengers £3 per mile. How much would they charge a passenger for a 12 mile journey?

Answer:

If a passenger pays £18 for a journey, how far was the journey? Show your working on the graph above.

Answer: 6 miles.

Algebra

Simplification Examples:

(a)
$$\frac{3t+18}{6}$$

$$= \frac{3t}{6} + \frac{18}{6}$$

$$= \frac{t}{2} + 3$$

(b)
$$(4y^3)^2$$

$$= 4y^3 \times 4y^3$$

$$= 4 \times 4 \times y \times y \times y \times y \times y \times y$$

$$= \underline{16y^6}$$

(c)
$$-15ab^{2} \div 35a^{2}b^{3}$$

$$= \frac{-15ab^{2}}{35a^{2}b^{3}}$$

$$= \frac{-\frac{3}{15} \times a \times b \times b}{35 \times a \times a \times b \times b \times b}$$

$$= -\frac{3}{7ab}$$

Using Factorisation:

(a) Fully factorise
$$8n + 36$$

= $4(2n + 9)$

(b) A square has a perimeter of 8n + 36Find the length of one side in terms of n

Use factorised expression: 4(2n + 9)

Perimeter of a square = $4 \times \text{length of side}$ = $4 \times (2n + 9)$

Length of one side = 2n + 9

Substitution Examples:

(i) If
$$p = 3$$
, $r = 4$, $s = -2$, $t = 6$
Substitute:

(a)
$$2r - s$$

= $2 \times 4 - (-2)$
= $8 + 2$
= 10

(b)
$$5p - r^2$$

= $5 \times 3 - 4^2$
= $15 - 16$
= -1

(c)
$$r(6s - p)$$

= $4(6 \times ^{-2} - 3)$
= $4(^{-1}2 - 3)$
= $4 \times (^{-1}5)$
= $\frac{-60}{}$

(d)
$$\frac{pr - 8}{3t + s}$$

$$= \frac{3 \times 4 - 8}{18 + ^{-2}}$$

$$= \frac{12 - 8}{18 - 2}$$

$$= \frac{4}{16}$$

$$= \frac{1}{4}$$

8

(ii) If $v = \sqrt{5gh}$, work out the value of gwhen v = 20 and h = -10

$$v = \sqrt{5gh}$$

$$20 = \sqrt{5 \times g \times -10}$$

$$400 = -50q$$

400 = -50g (square both sides)

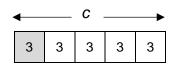
$$g = -8$$

Equations Examples:

(a) x+3=1-3 -3

$$x = -2$$

y - 4 = 6(b)


$$y = 10$$

(c) 3y = 12

$$\frac{3'y}{3'} = \frac{12}{3}$$

$$y = 4$$

(d) $\frac{c}{5} = 3$ (or $\frac{1}{5}c = 3$)

$$c = 5 \times 3 = 15$$

2a - 5 = 11(e) 2a = 16

$$\frac{\cancel{2}a}{\cancel{2}} = \frac{16}{2}$$

(f) 4 - 2x = 5 + x

(take x's to side with biggest x)

$$4 - 2x = 5 + x$$

$$4 = 5 + 3x$$

$$^{-1} = 3x$$

$$-\frac{1}{3} = \frac{3x}{3}$$

$$x = -\frac{1}{3}$$

$$(g) \qquad \frac{2x}{3} = 8$$

$$2x = 3 \times 8$$

$$2x = 24$$

$$\frac{2x}{2} = \frac{24}{2}$$

$$x = 12$$

Brackets

$$(a) \quad 2(8x + 6y)$$

$$= 16x + 12y$$

(b)
$$5 - 3(4a + 2)$$

$$=$$
 5 - 12a - 6

(c)
$$3(2m-4n)-2(m-5n)$$

$$= 6m - 12n - 2m + 10n$$

$$=$$
 $4m-2n$

Factorising

(a)
$$15f + 20$$

$$= 5(3f + 4)$$

(b)
$$16a^2b - 24ab^3$$

$$= 8ab(2a - 3b^2)$$

Algebra: Writing Expressions

On a train, there are *m* men, twice as many boys as men, 11 less girls than men, and three times as many women as girls.

In terms of *m*:

$$\frac{\text{Men}}{m} \quad \frac{\text{Boys}}{2m} \quad \frac{\text{Girls}}{(m-11)} \quad \frac{\text{Women}}{3(m-11)}$$

(a) Write an expression for the total number of people.

$$m + 2m + (m-11) + 3(m-11)$$

$$= m + 2m + m - 11 + 3m - 33$$

$$= 7m - 44$$

(b) There are a total of 68 people on the train.

Write down and solve an equation to find the value of m.

$$7m - 44 = 68$$

$$7m = 112$$

$$\frac{7m}{7} = \frac{112}{7}$$

$$m = 16$$

(c) How many women are on the train?

$$3(m-11)$$

$$= 3(16 - 11)$$

$$= 3 \times 5$$

Number Patterns

Examples

Sequence	Rule	nth Term	20 th Term
7, 11, 15, 19, 23,	Add 4 each time (4 times table) ***See example at the bottom of the page***	4n + 3	4n+3 = 4 × 20 + 3 = 83
40, 35, 30, 25, 20,	Subtract 5 each time (based on -5 x table)	−5 <i>n</i> + 45	-5n + 45 = $^{-}5 \times 20 + 45$ = $^{-}100 + 45$ = $^{-}55$
1, 4, 9, 16, 25,	Square numbers	n²	n^2 = 20 ² = 400
3, 6, 11, 18, 27,	Square then add 2	$n^2 + 2$	$n^2 + 2$ = 20 ² + 2 = 402
9, 16, 25, 36,	Add 2 then square	$(n + 2)^2$	$(n+2)^2$ = $(20+2)^2$ = 22^2 = 484
2, 4, 8, 16, 32,	Doubling	2 ⁿ	8 th term: 2 ⁿ = 2 ⁸ = 256
10, 100, 1000,	Multiply previous term by 10	10 ⁿ	8 th term: 10 ⁿ = 10 ⁸ = 100 000 000

The top sequence is the 4 times table but 3 more for each term, i.e. 4n + 3

Percentages

Find 35% of 360 m

Method 1:

35% of 360 m

$$\frac{35}{100} \times \frac{360}{1}$$

$$= \frac{\overset{7}{\cancel{36}} \times \overset{18}{\cancel{360}}}{\overset{\cancel{100}}{\cancel{5}}}$$

$$= \frac{7 \times 18}{1}$$

Method 2:

$$10\% = \frac{1}{10}$$

$$\frac{1}{10}$$
 of 360 = 36 m

$$30\% = 3 \times 36$$

= 108 m

$$35\% = 30\% + 5\%$$

= 108 + 18
= 126 m

Method 3 (Calculator)

$$35 \div 100 \times 360$$

= 126 m

Method 4 (Calculator)

Buttons on calculator: $35\% \times 360$

Pie Charts

Angle for 1 Person

30 people surveyed. Angle for 1 person = $360^{\circ} \div 30$ = 12°

Percentage pie charts:

$$1\% = \frac{360}{100} = 3.6^{\circ}$$

Bearings

You must use 3 figures.

042°, 009°, 316° ↑ ↑↑

Write the bearings and real life distances on the diagrams.

Scales

1: 10 000 1: 500

to change these do: -

<u>1 cm : 100 m</u> <u>1 cm : 5 m</u>