

CARGILFIELD

Maths Revision Book 2

Name:

Number

Fractions

Shapes

Circles

- Area of Circle = πr^2
- Circumference = $2\pi r$

Semi-circles

- Area = $\frac{1}{2} \pi r^2$
- Perimeter = $\frac{2\pi r}{2}$ + D

Segments

- Find out how many segments make up a full circle:
 e.g. 360° ÷ 72° = 5
- Area of Segment (above) = $\frac{1}{5} \times 2\pi r$
- Perimeter = $\frac{1}{5} \times 2\pi r + 2r$

Polygon Formulae:

- Number of sides(n) = 360 ÷ Exterior angle
- Exterior angle = 360 ÷ Number of sides
- Angle at the centre = Exterior angle
- Interior angle + Exterior angle = 180°
- Sum of Interior angles = 180(n 2)

Volume

- Volume of a cuboid
 = length x breadth x height
- Surface area of cuboid = 2ab + 2bc + 2ac
- Volume of a prism
 = cross-sectional area × length
- Surface area of a prism
 = sum of the areas of all faces

Graphs

Straight Line Graphs

Horizontal and Vertical Graphs

Diagonal Graphs

y = mx + c type graphs

Quadratic Graphs (Level 3)

x	-3	-2	-1	0	1	2	3
у	6	1	-2	-3	-2	1	6

Enlargement: Area and Perimeter

- If the scale factor is 3, the perimeter of the enlarged shape will be 3 times longer.
- the area of the enlarged shape will be 9 times larger (3²)

Q. Triangle F is an enlargement of triangle E using a scale factor of 3.
 If triangle F has an area of 72 cm², find the area of triangle E.

Area of E = $72 \div 3^2$ = $72 \div 9$ = 8 cm^2

Scatter Graphs and Correlation

Example: Molly grows some plants and measures their height and mass. She then plots her results on a scatter graph as shown below.

Height and Mass of Plants 2.0 1.8 ×, Line of best fit 1.6 Mass of Plant x (kg) 1.4 x x 1.2 60 80 120 100 height (cm)

Answer: Show your working on the graph using dotted lines (see above). If the plant has a height of 100 cm, it will weigh approximately 1.5 kg

Conversion Graphs

Example:

Easycab taxi company charge passengers £3 per mile. How much would they charge a passenger for a 12 mile journey?

If a passenger pays £18 for a journey, how far was the journey? Show your working on the graph above.

Answer: 6 miles.

Algebra

Simplification Examples:	
(a)	
6	
$=\frac{\frac{1}{3}t}{\frac{6}{2}}+\frac{18}{6}$	
$= \frac{t}{2} + 3$	
(b) $(4y^3)^2$	
$=4y^3 \times 4y^3$	
$= 4 \times 4 \times y \times y \times y \times y \times y \times y \times y$	
$= 16 y^6$	
(c) $^{-15ab^2} \div 35a^2b^3$	
$= \frac{-15ab^2}{35a^2b^3}$	
$= \frac{\frac{3}{15 \times a \times b \times b}}{\frac{35 \times a \times a \times b \times b \times b \times b}{7}}$	
$= -\frac{3}{7ab}$	
Using Factorisation:	
(a) Fully factorise $8n + 36$	
= <u>4(2n + 9)</u>	
(b) A square has a perimeter of $8n + 36$ Find the length of one side in terms of n	
Use factorised expression: $4(2n + 9)$	
Perimeter of a square = $4 \times \text{length of side}$ = $4 \times (2n + 9)$	
Length of one side = $2n + 9$	

Substitution Examples: (i) If p = 3, r = 4, s = -2, t = 6Substitute: (a) 2*r* - s $= 2 \times 4 - (-2)$ = 8 + 2= <u>10</u> (b) $5p - r^2$ $= 5 \times 3 - 4^2$ = 15 - 16 = <u>-1</u> (c) r(6s - p) $= 4(6 \times -2 - 3)$ = 4(-12 - 3)= 4 × (⁻15) = -60 (d) $pr-8 \\ 3t+s$ $= \frac{3 \times 4 - 8}{18 + 2}$ = <u>12 - 8</u> 18 - 2 = <u>4</u> 16 $=\frac{1}{4}$

(ii) If $v = \sqrt{5gh}$, work out the value of g when $v = 20$ and $h = -10$
$v = \sqrt{5gh}$
$20 = \sqrt{5 \times g \times -10}$
400 = -50g <i>(square both sides)</i>
<u>g = -8</u>
Equations Examples:
(a) $x + 3 = 1$ -3 -3
<u>x = ⁻²</u>
(b) $y - 4 = 6$ +4 +4
y = 10
(c) $3y = 12$
$\frac{3'y}{3'} = \frac{12}{3}$
y = 4
(d) $\frac{c}{5} = 3$ (or $\frac{1}{5}c = 3$)
$\begin{array}{c c} c \\ \hline 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$
$c = 5 \times 3 = 15$

2a - 5 = 11(e) +5 +5 2*a* = 16 $\frac{2a}{2} = \frac{16}{2}$ <u>a = 8</u> 4 - 2x = 5 + x(f) (take x's to side with biggest x) 4 - 2x = 5 + x+2*x* +2*x* 4 = 5 + 3x-5 -5 $^{-1} = 3x$ $-\frac{1}{3} = \frac{\Im x}{\Im}$ $x = -\frac{1}{3}$ (g) $\frac{2x}{3} = 8$ ← 2x → 8 8 8 $2x = 3 \times 8$ 2x = 24 $\frac{\sqrt{2}x}{\sqrt{2}} = \frac{24}{2}$ <u>x = 12</u>

Brackets	Algebra: Writing Expressions		
(a) $2(8x + 6y)$ = $16x + 12y$	On a train, there are <i>m</i> men, twice as many boys as men, 11 less girls than men, and three times as many women as girls. In terms of <i>m</i> :		
(b) 5 - 3 (4 <i>a</i> + 2)	<u>Men Boys Girls Women</u> m 2m (m - 11) 3(m - 11)		
= 5 - 12 <i>a</i> - 6 = <u>-1 - 12<i>a</i></u>	(a) Write an expression for the total number of people. m + 2m + (m - 11) + 3(m - 11)		
(c) $3(2m-4n) - 2(m-5n)$	= m + 2m + m - 11 + 3m - 33		
= 6m - 12n - 2m + 10n	= 7m - 44		
$= 4m - 2n$ Factorising (a) $15f + 20$ $= 5(3f + 4)$ (b) $16a^{2}b - 24ab^{3}$	(b) There are a total of 68 people on the train. Write down and solve an equation to find the value of <i>m</i> . 7m - 44 = 68 +44 + 44 7m = 112 $\frac{7m}{7} = \frac{112}{7}$ m = 16		
= <u>8ab(2a - 3b²)</u>			
	(c) How many women are on the train? 3(m - 11) = 3(16 - 11) $= 3 \times 5$ = 15 women		

Number Patterns

Examples

Sequence	Rule	nth Term	20 th Term
7, 11, 15, 19, 23,	Add 4 each time (4 times table) ***See example at the bottom of the page***	4 <i>n</i> + 3	4n + 3 = 4 × 20 + 3 = 83
40, 35, 30, 25, 20,	Subtract 5 each time (based on -5 × table)	-5n + 45	-5n + 45 = $^{-5} \times 20 + 45$ = $^{-100} + 45$ = $^{-55}$
1, 4, 9, 16, 25,	Square numbers	n ²	n^2 = 20 ² = 400
3, 6, 11, 18, 27,	Square then add 2	<i>n</i> ² + 2	$n^2 + 2$ = 20 ² + 2 = 402
9, 16, 25, 36,	Add 2 then square	(<i>n</i> + 2) ²	$(n+2)^2$ = $(20+2)^2$ = 22^2 = 484
2, 4, 8, 16, 32,	Doubling	2 ⁿ	8^{th} term: 2^n $= 2^8$ = 256
10, 100, 1000,	Multiply previous term by 10	10 ⁿ	$8^{th} term:$ 10 ⁿ = 10 ⁸ = 100 000 000

Percentages

Find 35% of 360 m

Method 1:

35%	of 360 m

$$\frac{\frac{35}{100} \times \frac{360}{1}}{\frac{35 \times \frac{18}{360}}{100}} = \frac{\frac{735 \times \frac{18}{360}}{100}}{\frac{7}{5}}$$

Method 2:

= <u>126 m</u>

 $10\% = \frac{1}{10}$ $\frac{1}{10} \text{ of } 360 = 36 \text{ m}$ $10\% \rightarrow 36 \text{ m}$ $5\% \rightarrow 18 \text{ m}$ $30\% = 3 \times 36$ = 108 m 35% = 30% + 5% = 108 + 18 = 126 m

Method 3 (Calculator) $35 \div 100 \times 360$ = <u>126 m</u> Method 4 (Calculator) Buttons on calculator: 35 % × 360 **Pie Charts** Angle for 1 Person 30 people surveyed. Angle for 1 person = $360^\circ \div 30$ = 12° Percentage pie charts: $1\% = \frac{360}{100} = \underline{3.6^{\circ}}$ **Bearings** You must use 3 figures. 042°, 009°, 316° 1 $\uparrow\uparrow$ Write the bearings and real life distances on the diagrams. Scales 1: 10 000 1: 500 to change these do: -1 cm : 10 000 cm 1 cm : 500 cm <u>1 cm : 100 m</u> <u>1 cm : 5 m</u>